Eliciting and encoding expert knowledge on variable selection into species distribution models (SDMs)

R. Pirathiban1 K. J. Williams2 A. N. Pettitt1 S. J. Low Choy13

1School of Mathematical Sciences
Queensland University of Technology

2CSIRO Land and Water
Canberra

3Griffith Social and Behavioural Research College
Griffith University

The International Biometric Society Australasian Region Conference
29 Nov - 3 Dec, 2015
Outline

1 Introduction
 • Background
 • Current approaches for variable selection in SDMs
 • Bayesian SDMs and variable selection methods
 • Aim

2 Case study

3 Method
 • Elicitation strategy
 • Encoding model

4 Results

5 Conclusion and discussion
Quality of SDMs relies on the quality of the input data, from bioclimatic indices to environmental and habitat descriptors.
Current approaches for variable selection in SDMs

A priori selection of variables

- Environmental niche models
 Nix (1986)

- Generalized linear model without variable selection
 Miller & Franklin (2002)

Explicit variable selection

- Generalized linear/additive models with variable selection
 Hastie et al. (2002)

- Classification trees with complexity/model-based pruning
 Breiman et al. (1984), Zeileis et al. (2008)

Model averaging

- Neural networks
 Stockwell (1999)

- Boosted/ bagged regression trees
 Leathwick et al. (2006)

- Maximum Entropy
 Phillips et al. (2006)

Researchers either consider the first approach with some variables or the second or third approaches with all the candidate variables
Limitations

- Does not necessarily select the best set of explanatory variables
- Investigating all possible combinations of variables is complex (e.g. 5 variables $\rightarrow 2^5 = 32$, 10 variables $\rightarrow 2^{10} = 1024$)
- Known tendency for under-fitting/over-fitting

Solution

Incorporating expert knowledge into variable selection
Elicitation approaches in Bayesian SDMs

Bayesian framework provides explicit mechanism to include expert knowledge through priors

Bayesian SDMs

- Classification trees (O’Leary et al. 2008)
- Hierarchical models (e.g. conditional probability networks) (Marcot et al. 2006, McCann et al. 2006)

Focused on

Elicitation of model parameters/one model structure NOT variable importance

One exception

Bayesian classification and regression trees (CART) (O’Leary et al. 2008)
Bayesian variable selection in Regression models

- **Spike and slab**
 (Mitchell & Beauchamp 1988)

- **Laplace**
 (Frühwirth-Schnatter & Wagner 2011)

- **Lasso models**
 (Park & Casella 2008)

Indicator variable selection models
(Kuo & Mallick 1998)

Ridge regression
Aim

To facilitate variable selection in species distribution models via Bayesian informative priors, constructed from the knowledge elicited from experts

- Construct an elicitation protocol that can extract the knowledge from experts
- Focus on ways to restructure the priors to encode elicited information
Eucalyptus tenuiramis

- Commonly known as silver peppermint
- Endemic species, locally common in south-eastern and eastern Tasmania
- 1442 presences and 7165 absences
- 31 environmental covariates which is a mixture of climatic (5), topographic (1) and soil (25) variables

Source: Williams & Potts (1996)
Elicitation strategy

- Developed incorporating the six main features of elicitation
 (Low Choy et al. 2009)
- Univariate and Absolute elicitation of the importance of variables
 (O’Leary et al. 2008)

Ranking

A simple ordering of variables from optimum to the worst

Let’s sort all the soil variables according to the importance of deciding the habitat suitability of Eucalyptus tenuiramis *from the most significant to the least significant*
Encoding model

Model 1:

Indicator variable selection model - Independent Bernoulli-Beta prior

\[Y_i \sim \text{Bern}(\mu_i) \]

\[\text{logit}(\mu_i) = \beta_0 + \sum_{j\in j_0} \delta_{ij} \beta_{ij} X_{ij} + \sum_{j\in j_1} \beta_{ij} X_{ij} \]

\[\delta_{ij} \sim \text{Bern}(p_j) \]

\[p_j \sim \text{Beta}(1, 1) \]

\[\beta_0, \beta_{ij}, \beta_{ik} \sim \text{N}(0, 1000) \]
Model 2:

Indicator variable selection model - Ranks encoded as inclusion probability on Bernoulli prior

\[Y_i \sim \text{Bern}(\mu_i) \]

\[
\text{logit}(\mu_i) = \beta_0 + \sum_{j \in j_0} \delta_{ij} \beta_{ij} X_{ij} + \sum_{j \in j_1} \beta_{ij} X_{ij}
\]

\[
\delta_{ij} \sim \text{Bern}(p_j)
\]

\[
\beta_0, \beta_{ij}, \beta_{ik} \sim N(0, 1000)
\]
Elicited variable importance

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Ranks</th>
</tr>
</thead>
<tbody>
<tr>
<td>geollmnage</td>
<td>Mean in Log10 geological age</td>
<td>10</td>
</tr>
<tr>
<td>geollrnage</td>
<td>Range log10 geological age</td>
<td>10</td>
</tr>
<tr>
<td>gravity9se</td>
<td>Bouger gravity anamalies</td>
<td>11</td>
</tr>
<tr>
<td>magnetic9s</td>
<td>Magnetic anomalies</td>
<td>11</td>
</tr>
<tr>
<td>nutrientsn</td>
<td>Nutrient status</td>
<td>9</td>
</tr>
<tr>
<td>minfertfe</td>
<td>Lithology - inherent fertility rating</td>
<td>9</td>
</tr>
<tr>
<td>pawc1me</td>
<td>Soils - plant available water holding capacity</td>
<td>1</td>
</tr>
<tr>
<td>ill20ne</td>
<td>Illite clay minerals in surficial topsoil</td>
<td>4</td>
</tr>
<tr>
<td>ill80ne</td>
<td>Illite clay minerals in surficial subsoil</td>
<td>4</td>
</tr>
<tr>
<td>kao20ne</td>
<td>Kaolinite clay minerals in surficial topsoil</td>
<td>6</td>
</tr>
<tr>
<td>kao80ne</td>
<td>Kaolinite clay minerals in surficial subsoil</td>
<td>6</td>
</tr>
<tr>
<td>sme20ne</td>
<td>Smectite clay minerals in surficial topsoil</td>
<td>6</td>
</tr>
<tr>
<td>sme80ne</td>
<td>Smectite clay minerals in surficial subsoil</td>
<td>6</td>
</tr>
<tr>
<td>pc1_20ne</td>
<td>Spectra of surficial topsoils–Principal component 1</td>
<td>5</td>
</tr>
<tr>
<td>pc1_80ne</td>
<td>Spectra of surficial subsoils–Principal component 1</td>
<td>5</td>
</tr>
<tr>
<td>pc2_20ne</td>
<td>Spectra of surficial topsoils–Principal component 2</td>
<td>7</td>
</tr>
<tr>
<td>pc2_80ne</td>
<td>Spectra of surficial subsoils–Principal component 2</td>
<td>7</td>
</tr>
<tr>
<td>pc3_20ne</td>
<td>Spectra of surficial topsoils–Principal component 3</td>
<td>8</td>
</tr>
<tr>
<td>pc3_80ne</td>
<td>Spectra of surficial subsoils–Principal component 3</td>
<td>8</td>
</tr>
<tr>
<td>ksatne</td>
<td>Hydrologic conductivity</td>
<td>14</td>
</tr>
<tr>
<td>bd30e</td>
<td>Soils - bulk density</td>
<td>2</td>
</tr>
<tr>
<td>hstructne</td>
<td>Pedality hydrological score</td>
<td>13</td>
</tr>
<tr>
<td>soldepthn</td>
<td>Solum depth</td>
<td>3</td>
</tr>
<tr>
<td>clay30e</td>
<td>Soils - clay fraction</td>
<td>1</td>
</tr>
<tr>
<td>wlioz2_w9s</td>
<td>weathering intensity index</td>
<td>12</td>
</tr>
</tbody>
</table>

- 25 soil variables ranked according to their order of importance on deciding the habitat suitability for *Eucalyptus tenuiramis*
Model 1: Non-expert informed variable selection

Figure: Soil variable subsets and their posterior probability via $p(\delta|\ldots)$

Figure: Soil variables colored based on top most model, in top 5 models, δ not significant
Model 1: Non-expert informed variable selection

Figure: Soil variable subsets and their posterior probability via $p(\delta|...)$

Figure: Soil variables colored based on top most model, in top 5 models, δ not significant
Results

Model2: Expert informed variable selection

Figure: Soil variable subsets and their posterior probability via $p(\delta | ...)$

Figure: Soil variables colored based on top most model, in top 5 models
Conclusion

- Bayesian framework- explicit and formal mechanism for incorporating expert knowledge
- Indicator variable selection model- explicit means of variable selection
- Informative priors influences the variable selection model to some extend

Current work

- Extend the elicitation protocol to capture more on variable importance
- Restructure the priors to encode the elicited information
References I

Kynn, M. (2005), Eliciting expert knowledge for Bayesian logistic regression in species habitat modelling, PhD thesis, Queensland University of Technology.

